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Abstract 

Wearables developed for human body signal detection receive increasing attention in the current decade. Compared to implantable sensors, 

wearables are more focused on body motion detection, which can support human–machine interaction (HMI) and biomedical applications. 

In wearables, electromyography (EMG), force myography (FMG), and electrical impedance tomography (EIT) based body information 

monitoring technologies are broadly presented. In the literature, all of them have been adopted for many similar application scenarios, 

which easily confuses researchers when they start to explore the area. Hence, in this article, we review the three technologies in detail, from 

basics including working principles, device architectures, interpretation algorithms, application examples, merits and drawbacks, to 

state-of-the-art works, challenges remaining to be solved and the outlook of the field. We believe the content in this paper could help readers 

create a whole image of designing and applying the three technologies in relevant scenarios. 
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INTRODUCTION 

In recent years, with the development of material science 

and electronic information technology, wearable devices 

have made great progress. Nowadays, wearable devices can 

be mainly used in two fields, HMI and medical. Among 

various wearable technologies, EMG, FMG, and EIT are 

commonly used to detect biological signals related to nerve 

and limb movement. When an action occurs, nerves send 

electrical signals to drive muscles. Then, muscle contraction 

causes changes in muscle volume and internal impedance. 

The posture and acceleration will change during the action. 

The electrical signals can be detected by EMG [1], while the 

changes in muscle volume can be detected by FMG [2], and 

internal impedance by EIT [3]. As a technique for detecting 

electrical activities caused by the muscles, wearable EMG 

systems are used widely. For instance, J. Qi et al. used EMG 

technology to recognize different hand gestures, as a result, a 

long-term recognition accuracy of 79% was achieved [4]. 

Because EMG detects electrical signals from superficial 

muscles, its performance is limited by the skin impedance 

changes caused by sweating and contact [5,6], which cause     

a decrease in the accuracy of pattern recognition. FMG is an 

alternative technology that directly captures changes in skin 

surface pressure due to changes in muscle volume caused by 

muscle activity [7,8]. Compared to EMG, FMG is robust to 

electrical interference and sweating, whilst also being 

non-invasive and inexpensive [9,10].  In the work of Islam et 

al. [11], the performance of motion detection with FMG and 

surface electromyography (sEMG) were compared in a daily 

scenario. They tested four different limb motions in five 

healthy male subjects. As a result, in one-day training, the 

day-to-day classification accuracy reaches 84.9% while the 

accuracy of sEMG reaches 77.8%. However, it is not EMG–

FMG sensing armband which can detect FMG signal and 

EMG signal simultaneously. Five healthy subjects performed 

gestures of ten American sign language (ASL) digits 0–9. 

The accuracy of EMG-only gesture recognition was 81.5%, 

while FMG-only was 80.6%, and co-located EMG–FMG had 

the best performance of 91.6%. Another potential human–

machine interaction technology is EIT. It is an imaging 

technology that detects the internal structural impedance 

distribution of objects by external electrical excitation 

signals. To obtain the internal resistivity of the object, EIT 

uses electrodes on the boundary to apply a high-frequency 

alternating signal and measure the response signal. For 

instance, Zhang et al. [3] designed a wearable hand ring 

called tomography based on 4-pole EIT, which achieved high 

accuracy in gesture. 

We also hope that researchers can further develop the three 

techniques to overcome their existing problems. The 

generation, processing, and application of FMG, EMG, and 

EIT signals are showed in Figure1.  

 
Figure 1. The generation, processing, and application of 

FMG, EMG, and EIT signals. 
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PRINCIPLE 

EMG, FMG, and EIT are emerging methods to obtain 

human information in recent years. The advantage of the 

three techniques is that all of them can be measured 

non-invasively and harmlessly, which means that they have 

great potential for human-machine interaction. In this 

section, we will introduce the principles of FMG, EMG, and 

EIT. 

FMG 

FMG is an approach to collecting motion signals by 

sensing changes in muscle volume. Its basic principle is that 

different muscle activities cause different movements. When 

an action occurs, the volume of the underlying 

musculotendinous complex changes, which results in a 

change in the distribution of surface mechanical forces. 

Different movements are encoded into different force images. 

By decoding these images, original motion information can 

be obtained, which has been widely used in gesture 

recognition [2], human–machine collaboration [16], 

prosthetic control [17], and operational force estimation [12]. 

Generally, researchers can use force sensors matrix/array 

to detect the mechanical force in the FMG technique [18]. 

The force sensor reflects the magnitude of the force applied 

to the sensor. When a socket with many sensors is wrapped 

around a part of the limb, the muscle force map can be 

obtained. With some algorithms, such as machine learning 

[9], the original motion information (type of movement and 

magnitude of force) can be obtained by using the FMG 

signal. An example of FMG signal output is shown in the 

relax–grasp–relax process. 

 
Figure 2. Single FMG sensor output signal during 

EMG 

EMG refers to a series of electrical signals associated with 

muscles due to neurological control and generated during 

muscle contraction. This signal is generally given by the 

experimental method, which can represent the physiological 

characteristics of muscles after amplification and processing 

[19,20]. 

EMG is derived from the brain to muscle control. It is 

based on three steps: resting potential, depolarization, and 

repolarization. Its formation is caused by the concentration 

difference of Na+ ions, K+ ions, and Cl− ions, but it is 

dominated by Na+ ions. When the muscle does not contract, 

the concentration of Na+ ions in muscle cells is greater than 

that out of muscle cells. With the ion pump, Na+ ions outflow 

forms a resting potential with positive external potential and 

negative internal potential on the membrane of muscle fiber. 

For example, when trying to move upper limbs, our brain 

sends movement control signals to the muscles, which are 

transmitted to the muscles through the nervous system. When 

the signal reaches the muscle fibres, chemicals such as 

acetylcholine are released at the nerve end, causing a large 

influx of Na+ ions, which rapidly form an action potential in 

the muscle fiber, a process known as depolarization. After the 

signal transmission, with the action ion pump, muscle fibers 

quickly return to the state of resting potential, which is called 

repolarization. The combination of all the muscles’ action 

potentials of a motor unit is called a motor unit action 

potential (MUAP) [21]. The superposition of MUAP in space 

and time produces EMG. The EMG signal generation process 

is shown in Figure3. 

 
Figure 3. EMG refers to a series of electrical signals 

associated with muscles due to neurological control and 

generated during muscle contraction 

EIT 

EIT is an imaging technology that detects the internal 

structural impedance distribu- tion of objects by external 

electrical excitation signals. By placing a set of electrodes on 

the surface of the conductive object to be measured, EIT 

applies a high-frequency alternating current to each electrode 

pair as the excitation signal and measures the electrical 

response signal on other electrode pairs in turn to obtain the 

internal resistivity of the object. Due to its advantages of 

non-radiation, non-damage, low cost, and simple structure, 

EIT has been widely used in non-destructive testing, 

geological exploration, and other fields. Nowadays, the 

application of EIT in biomedical imaging and human–

machine interaction has been widely studied. 

The human body is a complex structure with different 

electrical impedance distri- butions. There has been a lot of 

research on electrophysiology, which is concerned with the 

electrical properties of biological tissues, and the principle of 

them is very complex and influenced by frequency, 

temperature, and direction. This is closely related to the 

structure and function of the tissues. Generally speaking, the 

blood and muscle with high extracellular water content and 

electrolyte concentration have a relatively low electrical 
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impedance. In contrast, fat, bone, and air increase impedance. 

This difference gives each tissue and state certain 

characteristics. For organisms, when controlling the 

amplitude and frequency of excitation signals within a safe 

range, the output signal and calculate impedance 

distributions can be harmlessly measured. 

The impedance characteristics of organisms often change 

in certain situations. For example, the electrical impedance of 

the lungs depends to a large extent on the concen- tration of 

the internal air. When air is inhaled, the electrical 

conductivity of lung tissue concomitantly decreases. The 

flow or clotting of blood also causes impedance changes. 

When the body tissue is diseased, its electrical impedance 

may change significantly, which will be detected by EIT, to 

be applied to medical diagnosis and treatment. Similarly, the 

limbs in different postures also correspond to different 

impedance distributions. Therefore, the impedance 

distribution of the part of the body can be measured by EIT to 

realize posture detection. 

According to the different imaging purposes, EIT can be 

divided into two types: static imaging and dynamic imaging. 

Static imaging calculates the absolute value of impedance 

distribution and has a wider range of applications. However, 

it is more computationally intensive and vulnerable to noise, 

resulting in low image resolution. In contrast, dynamic 

imaging computes the relative impedance distribution and 

produces a differential image, which suppresses noise very 

well. Depending on the measurement method, it can be 

further divided into time difference imaging technique and 

frequency difference imaging technique. Time difference 

imaging obtains the difference of impedance at two times, 

while frequency difference imaging obtains the difference of 

impedance at different frequencies at the same time. 

Dynamic imaging is less affected by noise and relatively 

simple to calculate, but it is essential to ensure that 

impedance changes exist, so the application is constrained. 

EIT signal acquisition and reconstruction are shown in 

Figure4. 

 
Figure 4. EIT electrode distribution and four−channel voltage signal under high−frequency excitation 

DATA ACQUISITION 

In this section, we will introduce the signal acquisition 

methods of FMG, EMG, and EIT. We successively 

introduced the sensors used for FMG, the sampling frequency 

and channel number configuration, the EMG sampling 

method and electrode type, the sampling frequency, and 

channel number configuration, and finally, we introduced the 

electrode configuration of EIT and the drive pattern. 

FMG Signal Acquisition 

FMG technique uses force sensors to obtain information 

on the underlying mus- culotendinous complex changes 

during movements [7]. There are many types of force sensors 

used in FMG, for instance, piezoresistive- [22], capacitive- 

[23], piezoelectric- [24], optoelectronic- [25] and 

pneumatic-based [26] sensors. 

Piezoresistive Sensors 

To acquire effective biosignals, the sensor needs to be in 

close contact with the skin, and piezoresistive sensors have 

this characteristic. The most frequently used piezoresistive 

sensors are force-sensitive resistors (FSR), for instance, FSR 

402 [27–29] and FSR 400 [16,30], which are based on 

resistive polymer thick film sensor (RPTF) technology. 

Because of their thin profile, flexibility, and low cost, they 
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become a practical solution for prosthetic pressure 

measurement [31]. 

The structure of FSR 400 series is often composed of two 

layers, one is the printed semiconductor layer on the bottom 

layer and the other is the interdigitating electrode on the 

semiconductor layer. When pressure applied to the active 

area increases, the resistance values of the piezoresistive 

material will decrease. The force sensitivity range of FSR 

400 is 0.2 N–20 N, and its hysteresis is 10% [32]. 

The advantage of the piezoresistive sensor is its simple 

structure and affordability, but it suffers from heating issues 

and high hysteresis [33].  

Capacitive Sensors 

Capacitive sensors are another sensor used to detect FMG 

signals [23,34]. The capaci- tive sensor reflects the 

force/pressure loaded on it by detecting the capacitance value 

of capacitance. To achieve this, an elastic material between 

two electric layers is necessary. When the pressure applied to 

the sensor changes, the distance between two electric layers 

changes, resulting in a change in the capacitance value of the 

sensor [35]. 

Polydimethylsiloxane (PDMS) is a frequently used 

material in dielectric layers. Lei et al. used PDMS as the 

dielectric layer in a 16:1 mix ratio. The sensor can measure 

the pressure up to 945 kPa, and obtain a high sensitivity of 

6.8%/N [35]. Maddipatla et al. used silver (Ag) ink on a 

flexible polyethylene terephthalate (PET) as electrodes, and a 

16:1 mixing ratio of PDMS as a dielectric layer to fabricate a 

force sensor. The sensor offered a sensitivity of 0.13%/N 

from 0 N to 10 N [36]. 

Capacitive sensors have the advantage of low power 

consumption and fast response, but they are sensitive to 

electromagnetic interference (EMI) noise and are not suitable 

for long-term use. 

Piezoelectric Sensors 

Piezoelectric sensors have good dynamic force-sensing 

performance. When pressure is applied to the sensor, a 

potential difference is generated between the upper and lower 

plates of the sensor. By measuring its voltage, the magnitude 

of the pressure can be obtained. Common piezoelectric 

materials can be divided into ceramics, films, and fibers [33]. 

The acquisition of human biological information places 

high demands on the flexibility of sensors. The advantage of 

piezoelectric sensors is low hysteresis, strong sensitivity, and 

low power consumption. However, due to their 

characteristics, piezoelectric sensors cannot be used in static 

force sensing. 

DATA PROCESSING 

The original signal obtained by sensors cannot be used 

directly.  In order to apply  the collected signals to practice, 

we need to apply some signal processing steps, such as 

filtering and feature extraction, and then use algorithms, such 

as machine learning, to connect the original signals with 

practical applications. In this section, we will introduce some 

data processing methods for the three signals. All steps of 

data processing are shown in Figure5. 

 
Figure 5. All steps of data processing 

Data Pre-processing 

In the pre-processing stage, we mainly filter and amplify 

the signal. At the same time, for different signals, there are 

their own unique signal pre-processing methods, which will 

be mentioned in other pre-processing. 
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Summary and Comparison of the Three Techniques 

 
Figure 6. EMG, FMG and EI signals 

APPLICATION 

FMG, EMG, and EIT are three methods to obtain 

biological information of the human body, they can reflect 

different conditions of the human body. Therefore, they are 

widely used in human–machine interaction (HMI), medical, 

and healthcare. Some applications are shown in Figure7. In 

this section, we will introduce some applications of three 

techniques in HMI, medical, and healthcare. 

 
Figure 7. EMG different Applications 

CONCLUSION 

Despite their various advantages, they still have some 

problems to solve. In this section, we will analyze the current 

problems and challenges faced by these three technologies. 

The comparison of the three technologies is shown in Table1. 

Table 1. Comparison of three techniques. 

Technique Robustness SNR System Frequency    

FMG Excellent   High Simple          0–100 Hz  

EMG Poor Low   Normal       20–500 Hz 

EIT Poor Low Normal        1k–1 MH  
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